Forest Hills Primary School

Virtual Calculation Policy

The purpose of our Calculation Policy is to ensure consistency in the teaching of Mathematics throughout the school and to ensure that pupils develop efficient written and mental methods of calculation, underpinned by conceptual understanding.

This policy provides an overview of the strategies used in our school to teach Mathematics, specifically the four operations, as defined within the National Curriculum in England: Mathematics Programme of Study.

The progression of the four operations (,,$+- \times$ and \div) are shown across each of the primary year groups $1-6$. This is a guide since children progress at different rates. Teachers should model strategies appropriate to the ability of the children they teach, regardless of their year group, whilst striving to achieve age related expectations at the end of the academic year.

At Dunstall Hill Primary School, we believe that children should be introduced to the processes of calculation through the concrete, pictorial and abstract (CPA) approach. Our children are introduced to calculation through practical activities, using concrete resources. As children develop their understanding of the underlying concepts and mathematical models, they develop ways of recording to support their thinking. In the first instance, this recording takes the form of pictorial representations. Over time, children learn how to use models and images to support their mental and informal written methods of calculation.

As children become more proficient in their use of mental methods, their informal written methods also become more efficient. Some recording takes the form of jottings, which are used to support children's thinking. More abstract, formal written methods are taught only when the child is able to use a wide range of mental calculation strategies and these are always underpinned by concrete and pictorial experiences.

Our ultimate aim is for children to be able to select an efficient method to solve problems. Therefore children will be encouraged to look at a calculation or problem and to determine the most appropriate method to choose - pictures, mental calculation with or without jottings or a formal, written method.

The end of year expectations in the National Curriculum shows the progression in children's use of calculation within the following strands 'Addition and Subtraction' and 'Multiplication and Division'. These end of year expectations will be achieved through the use of the following written methods of calculation.

(Bead string and number line)

2	Add numbers, including: - a two-digit number and ones - a two-digit number and tens - two two-digit numbers - adding three one-digit numbers * Show that addition of two numbers can be done in any order (commutative).	Subtract numbers, including: - a two-digit number and ones - a two-digit number and tens - two two-digit numbers - Show that subtraction of two numbers cannot be done in any order.	Calculate multiplication statements within the 2,5 and 10 multiplication tables and write them using the multiplication (x) and equals ($=$) signs. - Show that multiplication of two numbers can be done in any order (commutative).	Calculate division statements within the 2,5 and 10 multiplication tables and write them using the division (\div) and equals (=) signs. - Show that division of numbers cannot be done in any order.
	Addition of two two-digit numbers (no exchange): $34+23=57$ (Numicon and dienes) Addition of two two-digit numbers (exchange) $47+24=71$ (Place value counters)	Subtraction two two-digit numbers (no exchange) $47-23=24$ (Numicon and dienes) (Place value counters) Subtraction of two two-digit numbers (exchange) $52-27=25$ (Place value counters)	Multiplication of two numbers within the 2, 3,5, 10 multiplication tables. Introduce \times sign to mean 'how many times" and model recording calculations $5 \times 3=15$ or 5,3 times $=15$ (Numicon) (Arrays, ten frames and counters) (Counters - one to many correspondence)	Division of numbers within known multiplication tables Consolidate understanding of 'sharing' and 'grouping' as outlined within Year 1. Grouping How many $2 s$ are in 10? What is 10 grouped into twos? (Cubes, Numicon and counters) (Counters - one to many correspondence)

3	* Add numbers mentally, including: - a three-digit number and ones - a three-digit number and tens - a three-digit number and hundreds * Add numbers with up to three digits, using formal written methods of columnar addition	- Subtract numbers mentally, including: - a three-digit number and ones - a three-digit number and tens - a three-digit number and hundreds - Subtract a two-digit or 3-digit number from a two-digit or 3 digit number using a formal written method	- Recall and use multiplication facts for the 3, 4 and 8 multiplication tables. - Multiply using multiplication tables that they know, including for two-digit numbers times one-digit numbers, using efficient written methods'partitioning method'	- Recall and use division facts for the 3, 4 and 8 multiplication tables. - Divide using known multiplication tables, including for two-digit numbers divided by one-digit numbers, using mental methods, progressing to efficient written methods
	Addition of numbers with up to three digits $263+129=392$ (Dienes)	Subtraction of numbers with up to three digits $263-129=134$ (Dienes)	Recall and use multiplication facts for the 3,4 and 8 multiplication tables. $8 \times 4=32$ (Counters - one to many correspondence)	Recall and use division facts for the 3,4 and 8 multiplication tables. $56 \div 8=7$ (Counters - one to many correspondence)
	(Place value counters)	(Place value counters)	$8 \times 4=$	$56 \div 8=$ 8888888
			Multiplication of a two-digit number by a one-digit number. $13 \times 4=52$ (Dienes)	digit number, using known multiplication tables. $60 \div 3=20$ (Dienes)
	Refer to the calculation policy for progression steps.	Refer to the calculation policy for progression steps.		

(Place value counters)

4	Add numbers with up to 4 digits using mental strategies and the formal written methods (columnar addition) - Add numbers with 2 decimal places, using formal written methods (columnar addition)	- Subtract numbers with up to 4 digits using mental strategies and the formal written methods (columnar subtraction) - Subtract numbers with 2 decimal places, using formal written methods (columnar subtraction)	- Recall multiplication facts for multiplication tables up to 12×12. - Multiply two-digit and three-digit numbers by a one-digit number using formal written layout e.g. $84 \times 6,216 \times$ 4 * Multiply three-digit numbers with 1 decimal place by a one-digit number using formal written layout e.g. $134.5 \times$ 7	- Recall division facts for multiplication tables up to 12×12. - Divide numbers up to 3 digits by a 1 digit number using the formal written method (no remainders)
	Addition of numbers with up to four digits: Refer to the Year 3 place value counters videos. (Column method) four digit + four digit	Subtraction of numbers with up to four digits Refer to the Year 3 place value counters videos. four digit - four digit $6467-2684=$ four digit - three digit	Recall and use multiplication facts for the multiplication tables up to 12×12. Refer to the Year 3 counters videos. Multiplication of two and three digit numbers by a one-digit number $216 \times 4=864$ (Place value counters) Refer to the calculation policy for progression steps.	Recall and use division facts for the multiplication tables up to 12×12. Refer to the Year 3 counters videos. Divide numbers with up to three-digit by a one-digit number $976 \div 8=122$ (Numicon) Refer to the calculation policy for progression steps.
	four digit + three digit			

